

Treatment of high risk follicular lymphoma

Prof. Wojciech Jurczak, M.D., Ph.D. Dpt of Hematology, Jagiellonian University wojciech.jurczak@uj.edu.pl, (+48 602 338290)

DISCLOSURE OF AFFILIATIONS

W. Jurczak

Celgene (Research support) Gilead (Research support) TG Therapeutics (Research support) Merck (Research support) Beigene (Research support) Pharmacyclics (Research support) Pfizer (Research support) Teva (Research support) Servier (Research support) Celgene (Research support) Sandoz Novartis (Advisory board, research support) Roche (Advisory board, research support) Janssen (Advisory board, research support) Acerta (Advisory board, research support) AbbVie (Advisory board, research support) Takeda (Advisory board, research support) NovoNordisk (Advisory board, research support) Celltrion (Advisory board, research support)

Prognosis of advanced FL

Follicular lymphoma in Sweden: nationwide improved survival in the rituximab era

Junlen et al., Leukemia (2015)

One patient may be submitted to 5-7 lines of therapy...

Chemotherapy without MoAb is NOT recommended

Clinical Practice in USA FL, N= 2728, years 2004-2007

Salles et al., ASH 2017

Benchmark of PFS for multiple lines of therapy in FL treated in the Rituximab Era (1998 – 2007, N=1134)

PFS by line of treatment

Alperovich et al., ASH (2016)

How to evaluate the novel agents ?

- **OS and PFS** the traditional endpoint of clinical studies require extended follow-up (median OS and PFS exceed 10 and 7 years respectively)
- CCR30 (Continuous Complete Response rate at 30 months)
 - a potential surrogate of PFS
- **POD24** (Progression of Disease at 24 months)
 - a robust predictor of shortend OS

CR30 as a Surrogate End Point in First-Line Follicular Lymphoma FLASH (Follicular Lymphoma Analysis of Surrogacy Hypothesis) group

- Data from 13 randomized trials (N=3837) in FL (1980 to 2007),
- an adequately long follow-up;
- 2851 Patients on Rituximab, including 1630 on R-maintenance
- 1415 cases with high FLIPI, 1630
- Assessment of the prediction of log (HRPFS) on the basis of the estimated regression model. Patient data ensuring the consistent calculation of end points

The prognostic significance of POD24 in FL: National LymphoCare Study

- NLCS register data on 2655 newly diagnosed FL patients (2004-2007) First-line R-CHOP (n = 588)*Early POD: **Reference Group:** Excluded Relapse within 2 No relapse or death Lost to follow up (n = 46)years of diagnosis within 2 years Death without POD (n = 12)of diagnosis within 2 years of (n = 110)diagnosis (n = 420)
- 110 (19%) relapsed within 2 years of diagnosis
- significantly more likely to have a high FLIPI
- OS was markedly reduced in the POD24, with a 5-year survival rate of 50% vs 90%

The prognostic significance of POD24 in FL: Results of 3 Rituximab based non-chemotherapy CALGB trials

	R-galiximab (Anti-CD80, CALGB 50402)	R-epratuzuma b (Anti-CD22, CALGB 50701)	R-lenalidomide (CALGB 50803)
Ν	60	57	57
Age (median/ range)	57 (22-85)	54 (32-90)	52 (32-79)
FLIPI Low Intermediate High	12 (20.7%) 25 (43.1%) 21 (36.2%)	13 (22.8%) 26 (45.6%) 18 (31.6%)	17 (29.8%) 38 (66.7%) 2 (3.51%)
Early Progression	25 (41.7%)	15 (26.3%)	8 (14.0%)
Median follow-up in years (range)	6.7 (0.0-10.1)	6.3 (0.3-8.1)	4.5 (0.1-5.5)

OS

The prognostic significance of POD24 in FL: GELTAMO transplant registry data

629 patients with nontransformed FL who received ASCT (1989 – 2007) at 44 centers in Spain.

Disease status at ASCT

CR1	203 (32.5%
CR2	174 (28%)
CR3	28 (4.5%)
PR1	140 (22%)
PR ≥ 2	81 (13%)

First line Immunochemotherapy in FL 3-rd phase studies

Study	Patient number	Regimen/design	ORR, % (CR, %)	PFS/TTF	OS
Marcus et al. [51]	321			TTF (mFU 30 months)	At 4 years:
		CVP	57 (10)	7 months	77%
		R-CVP	81 (41)	27 months	83%
				(P<0.0001)	(P=0.029)
Hiddeman et al. [50]	428			18 month TTF rate:	
		CHOP	90 (17)	12.6%	17 deaths
		R-CHOP	96 (20)	29.8%	6 deaths
				(P<0.001)	(P=0.016)
Federico et al. [53]	534			3-year TTF rate:	At 3-years:
		R-CVP	88 (67)	46%	95% for all patients
		R-CHOP	93 (73)	62%	
		R-FM	91 (72)	59%	
Press et al. [47]	532			5-year PFS rate	At 5 years
		R-CHOP	84 (40)	60%	92%
		CHOP-iodine-131	84 (45)	66%	86%
		tositumomab		(P=0.11)	(P=0.08)
Rummel et al. [49]	514			PFS:	Deaths:
		R-CHOP	91 (30)	31.2 months	17.8%
		BR	93 (40)	69.5 months (HR 0.58, 95% CI [0.44, 0.74]; P<0.0001)	16.5%
Flinn et al. [54, 55]	447			5-year PFS rate:	At 5 years
		R-CHOP/R-CVP	91 (25)	55.8%	85.0%
		BR	97 (31)	65.5% (HR 0.61, 95% CI [0.45, 0.85]; <i>P</i> =0.0025).	81.6% (HR 1.1, 95% CI [0.72, 1.84]; <i>P</i> =0.5461)
Salles et al. [57, 58]	1018		2 years after radomization	6 year PFS rate:	At 6 years
	randomized	R-CHOP/R-CVP/R-FCM	CR/CRu—52.2	42.7%	88.7%
		R-CHOP/R-CVP/R-FCM+MR	CR/CRu—71.5 (<i>P</i> =0.0001)	59.2% (HR 0.58, <i>P</i> <0.0001	87.4%
Marcus et al. [41]	1202			3-year PFS rate:	3 year estimate
		R-CHOP/R-CVP/BR+MR	86.9 (23.8)	73.3%;	92.1%
		O-CHOP/O-CVP/BO+MO	88.5 (19.5)	80.0%	94.0%
				(HR 0.66; 95% Cl [0.51–0.85]; <i>P</i> =0.001)	(P=0.21)

FOLL05 Study comparing R-CVP vs R-CHOP vs R-FM (N= 534, no R-maintenance)

Luminari et al., JCO (2018)

FOLL05 Study comparing R-CVP vs R-CHOP vs R-FM (N= 534, no R-maintenance)

The risk of SPM (second primary malignancy) in FL patients

SPM (excluding skin cancers)	R-CVP (n=165)	R-CHOP (n=166)	R-FM (n=171)
Breast cancer (female)	1	2	1
Uterine cancer	-	1	2
Prostate cancer	2	1	1
Lung cancer	-	2	1
Kaposi sarcoma/skin cancer	1	1	2
GI tract	1	1	1
Urothelial cancer	-	2	-
Prostatic cancer	-	-	1
Melanoma	1	-	1
Glioblastoma	-	1	-
AML/MDS	1	3	5
Hodgkin lymphoma	-	1	1
Multiple myeloma	-	1	-
CLL	-	1	-
SMZL	-	1	-
Total SM(%)	7 (4.2%)	18 (10.8%)	16 (9.3%)
Histologic transformation	5 (3.0%)	4 (2.4%)	2 (1.1%)

Cumulative incidence of SPM in other studies

10.5% (12-years, 563 iNHL pts)

- Sacchi et al., Haematologica 2008,

27% (10-years, FND: fludarabine, mitoxantrone and dexamethason treated pts)- Nastoupil et al., Br J Haemat 2017

8% (10 years, FCM: fludarabine, cyclophosphamide and mitoxantrone treated pts)Magnano et al. Ann Hematol 2017

Luminari et al., JCO (2018)

Rituximab and risk of FL transformation A retrospective pooled analysis (N=8116)

Fedeerico et al., Lancet Haematol 2018

Polish Lymphoma R esearch G roup PLRG-04 (R-CVP vs R-CHOP + R-maintenance in iNHL, N=250)

Walewski et al., ICML 2019

High tumor burden untreated FL

223 centres in 25 countries

- 9 pts did not receive chemo
- 147 pts withdrew during or at the end of induction (failure to respond; toxicity)
- 28 pts failed to be randomized on time

[‡] 1 pt died during the randomization process

PRIMA: Secondary endpoints

TTNT

OS

Salles et al., ASH 2017

PRIMA: Adverse events

	Observation (n=508)		Rituximab maintenance (n=501)			
	Grade 3/4	Leading to treatment discontinuation	Grade 3/4	Leading to treatment discontinuation		
All adverse events	84 (17%)	8 (2%)	121 (24%)	19 (4%)†		
Neoplasia	17 (3%)	6 (1%)	20 (4%)	5 (1%)		
Neutropenia	5 (1%)	0	18 (4%)	0		
Febrile neutropenia	2 (<1%)	0	1 (<1%)	1 (<1%)		
Infections	5 (1%)	0	22 (4%)	4 (1%)		
CNS disorders	13 (3%)	0	10 (2%)	0		
Cardiac disorders	5 (1%)	0	11 (2%)	1 (<1%)		
Pregnancy	NA	2 (<1%)	NA	3 (1%)		

PR→ CR during R- maintenance Routine clinical practice (prospective obs. in Germany 2009-14)

Dührsen et al., Cancer Medicine 2018

Improving R-chemotherapy results

- s.c. Rituximab (shortening time of therapy administration, improving QoL)
 - Davies et al., Lancet Haematol. 2017

- Rituximab biosimilars (reducing the cost of therapy, improving treatment accessibility)
 - Coiffier et al., Lancet Haematol 2017
 - Jurczak et al., Lancet Haematol 2017
 - Ogura et al., Lancet haematol 2018

Study	Design	Indica- tion	Primary endpoint	N	Status	Study	Design	Indica- tion	Primary endpoint	N	Status
GP2013	3					CT-P10					
JP-trial	Phase I Open-label	Indolent	Safety and PK	6	Completed	1.1	Phase I RCT (2:1) Double-blind	RA	PK equivalence between CT-P10 and Ref-RTX	154	Completed Published ^{4,5}
	Single-arm	LIBNHL	of SDZ-RTX		NCT01933516	1.3 (1.1 follow- on study)	Phase I Open-label Single-arm	RA	Long-term efficacy and safety of CT-P10	58	Completed Published ⁶
ASSIST-	Phase II RCT (1:1:1)	RA	PK equivalence between	312	Completed Published ¹	1.2	Phase I Open-label Single-arm	DLBCL	Initial evidence of CT-P10 safety	N/A	Terminated recruitment difficulties ^{7,8}
	Double-billnd		SD2-RTX and Ref-RTX			3.2	Phase III PCT (1:1:1)	RA	PK and therapeutic equivalence	372	Study
	Phase III		Therapeutic		Study	5.2	Double-blind		between CT-P10 and Ref-RTX	572	Published ⁹
FL	RCT (1:1) Double-blind	Advanced FL	between SDZ-RTX and Ref-RTX-EU	629	ongoing Published ²	3.3	Phase I/III RCT (1:1) Double-blind	Advanced FL	PK equivalence and therapeutic non-inferiority between CT-P10 and Ref-RTX-US	140	Study ongoing Published ¹⁰
ASSIST- RT	Phase III RCT (1:1) Double-Blind	RA	Safety and immunogenicity	107	Completed Published ³	3.4	Phase III RCT (1:1) Double-Blind	LTB FL	Therapeutic equivalence between CT-P10 and Ref-RTX	258	Study ongoing Published ¹⁰
			105	<mark>4 p</mark>	atients				98	82 p	atients

 Obinutuzumab and other glycoengineered MoAb (prolonging PFS)

Rituximab Biosimilars in advanced stage FL

Jurczak et al, Lancet Haematol 2017; Coiffier et al, Lancet Haematol 2017

Obinutuzumab

Type I-anti-CD20 mAbs binding may result in internalisation of CD20 into B Cells

Type II-anti-CD20 mAbs remainalmost exclusively on the cel surface and do not internalise

Mossner et al., 2010; Niederfellner et al., 2011; Klein C, et al. MAbs 2013; Ferrara C, et al. J Biol Chem 2006

Obinutuzumab

In preclinical studies, glycoengineering of the Fc region of GA101 has demonstrated up to a 100-fold increase in ADCC over nonglycoengineered MoAbs

Mossner et al., 2010; Niederfellner et al., 2011; Klein C, et al. MAbs 2013; Ferrara C, et al. J Biol Chem 2006

Obinutuzumab a glycoengeneered MoAb

CDC – Complement Dependent cytotoxicity

ADCC - antibody dependent cellular toxicity

ADP - antibody dependent phagocytosis

GALLIUM: Study design and baseline characteristics (N=1202)

GALLIUM: PFS (primary target)

- No significant differences in neither CR nor ORR
- More Obinutuzumab treated patients achieved a deep MRD response
- Obinutuzumab decreased number of POD24 (9% vs 16%)

GALLIUM: PFS – subgroup analysis

- The study was not powered to demonstrate significant differences between the treatment arms in the different chemotherapy subgroups
- The frequency of all grade 3 to 5 AEs was higher in patients treated with CHOP than in patients treated with bendamustine and CVP, however
 Bendamustine was associated with higher rates of grade 3-5 infections than CHOP or CVP during the maintenance and follow-up phases
- In patients age > 70 years, treated with Bendamustine, fatal events that occurred before new anticancer treatment were more common

Marcus et al., NEJM 2017; Hiddemann et al., JCO 2018

GALLIUM: tolerability profile

Patients reporting at least one grade ≥3 selected AESI, %	G-chemo (n=595)	R-chemo (n=597)
Neutropenia	47	40
Infections	20	16
Infusion-related reactions	7	4
Second malignancies	5	4
Cardiac events	4	3

Nature of tumours	R-chemo (n=597)	G-chemo (n=595)
Second malignancies*	21 (4%)	29 (5%)
Other solid tumours ⁺	18 (3%)	15 (3%)
Haematological tumours [‡]	0	6 (1%)
Non-melanoma skin cancer	3 (1%)	8 (1%)

GALLIUM: OS

	R-chemo (n=601)	G-chemo (n=601)	
Patients with event, n (%)	46 (7.7)	35 (5.8)	
3-year OS,	<mark>92.1</mark>	<mark>94.0</mark>	
% (95% Cl)	(89.5, 94.1)	(91.6, 95.7)	
HR (95% CI),	0.75 (0.49, 1.17),		
p-value*	p=0.21		

Median follow-up: 34.5 months

Marcus et al., NEJM 2017; Hiddemann et al., JCO 2018

GALLIUM: PET data

Trotman et al., Lancet Oncol 2018
GALLIUM: PFS by MRD status at end of induction

Is prolonged PFS an improvement ?

Cereblon binding agents

REVELANCE: Study design and baseline characteristics (N=1030)

Total Treatment Duration: 120 weeks

Treatment Period	R ² Arm	R-Chemo Arm
1 (~6 months)	 Lenalidomide: 20 mg/d, d2-22/28 Rituximab: 375 mg/m² 	Investigator/patient choice prior to randomization • R-CHOP (72%) • R-B (23%) • R-CVP (5%)
2 (~1 year)	 Lenalidomide: 20 or 10 mg/d per response at 6, 9, or 12 cycles Rituximab: 375 mg/m² 	Rituximab: 375 mg/m ²
3 (~1 year)	Rituximab: 375 mg/m ²	Rituximab: 375 mg/m ²

Characteristics		R²(n=513) n (%)	R-Chemo (n=517) n (%)
Median age, years (range) Age >70 years		59 (30-89) 80 (16)	59 (23-83) 78 (15)
Male		251 (49)	251 (49)
ECOG PS	0 1 2 Not evaluated	341 (66) 157 (31) 13 (3) 2 (<1)	345 (67) 157 (30) 14 (3) 1 (<1)
Ann Arbor stage	1/11 111/1V	30 (6) 483 (94)	40 (8) 477 (92)
Bulky disease (>7 cm)		218 (42)	199 (38)
FL grade ^a	1 or 2 3a	437 (85) 65 (13)	443 (86) 63 (12)
FLIPI scoreLow risk (0-1)Intermediate risk (2)High risk (3-5)		77 (15) 183 (36) 253 (49)	76 (15) 191 (37) 250 (48)
Lactate dehydrogenase (>ULN)		156 (30)	137 (26)

Morschhauser et al., NEJM 2018

REVELANCE: Efficacy - Response Rates

	Rituximab– Lenalidomide Group	Rituximab– Chemotherapy Group
Variable	(N = 513)	(N=517)
Response status at 120 weeks, as assessed by independent re- view committee		
Overall response — no. (% [95% CI])	312 (61 [56-65])	336 (65 [61-69])
Confirmed or unconfirmed complete response — no. (% [95% CI])	247 (48 [44–53])	274 (53 [49–57])
Complete response, confirmed — no. (%)	142 (28)	169 (33)
Complete response, unconfirmed — no. (%)	105 (20)	105 (20)
Partial response — no. (%)	65 (13)	62 (12)
Stable disease — no. (%)	2 (<1)	0
Progressive disease or death — no. (%)*	87 (17)	79 (15)
Not evaluated or data missing — no. (%)†	112 (22)	102 (20)

Morschhauser et al., NEJM 2018

REVELANCE: Efficacy - PFS and OS

Morschhauser et al., NEJM 2018

REVELANCE: AE

	R ² (n=507)	R-Chemo (n=507)
More frequent AE	 cutaneous reactions, tumor flare, diarrhea 	 neutropenia (grade 3/4), GCSF usage, febrile neutropenia, nausea &vomiting, neuropathy, alopecia,
Similar rate of discontinuation	31% (PD – 13%, toxicity – 8%)	29% (PD – 14%, toxicity – 3%)
Similar rate of SPM	7% (5% invasive SPM)	10% (5% invasive SPM)
Deaths related to treatment	1 case	1 case

Patients, n (%)	R²(n=507)	R-Chemo (n=503)
Grade 3/4 neutropeniaª Grade 4 neutropenia	160 (32) 41 (8)	252 (50) 154 (31)
Nadir ANC <100/µL	5 (1)	32 (6)
Median time to onset of first grade 3/4 lab	3.7 months	0.6 months
Grade 3/4 infections associated with grade 3/4 neutropenia	10 (2)	20 (4)
Febrile neutropenia ^a Febrile neutropenia requiring hospitalization	11 (2) 8 (2)	34 (7) 26 (5)
Infections requiring hospitalization	46 (9)	60 (12)
Received growth factors	117 (23)	340 (68)

R/R FL

GADOLIN study – R/R iNHL (N=413)

Cheson et al., JCO 2018

GADOLIN study – R/R iNHL (N=413) Median follow-up of 31.5 months

Cheson et al., JCO 2018

GADOLIN study – R/R iNHL (N=413) - tolerability profiles

Cheson et al., JCO 2018

BCR pathway inhibitors

IP3K inhibitors

			($)$ N $)$ 0 $($ $)$ N $)$ 0 $($ $)$ N $)$ N	
Isoform	<mark>Idelalisib</mark> (IC ₅₀ -nM)¹	Duvelisib (IC ₅₀ -nM)²	<mark>Copanlisib</mark> (IC ₅₀ -nM)³	TGR-1202 (IC ₅₀ -nM)⁴
P110a	20,000	1410	0.4–1	10,000
P110b	1,900	26.2	10–18	800
P110g	3,000	19.6	93	400
P110d	8	0.36	3–10	24

Characteristic	N=125
No of prior regimens Median, [Range]	4 [2-12]
Prior Therapy	
Rituximab	125 (100%)
Alkylating Agent	125 (100%)
Bendamustine	81 (65%)
Anthracycline	80 (64%)
Purine Analog	42 (33%)
Stem Cell Transplantation	14 (11%)
Disease type, n (%)	
FL	72 (58%)
SLL	28 (22%)
LPL/WM	10 (8%)
MZL	15 (12%)
LDH (>ULN), n (%)	38 (30%)
Bulky Disease (≥ 5 cm)	59 (47%)
Bulky Disease (≥ 7 cm)	33 (26%)

AE	Any Grade N, %	Grade ≥ 3 N, %
Diarrhea	54 (43%)	16 (13%)
Fatigue	37 (30%)	2 (2%)
Nausea	37 (30%)	2 (2%)
Cough	36 (29%)	None
Pyrexia	35 (28%)	2 (2%)
Dyspnea	22 (18%)	4 (3%)
Decreased appetite	22 (18%)	1 (1%)
Abdominal pain	20 (16%)	3 (2%)
Vomiting	19 (15%)	3 (2%)
URI	18 (14%)	None
Decreased weight	17 (13%)	None
Rash	16 (13%)	2 (2%)
Asthenia	14 (11%)	3 (2%)
Night Sweats	14 (11%)	None
Pneumonia	14 (11%)	9 (7%)

On Study	Any Grade	Grade ≥ 3
Neutrophils decreased	70 (56%)	34 (27%)
Hemoglobin decreased	35 (28%)	2 (2%)
Platelets decreased	32 (26%)	8 (6%)

	Grade 1-2	Grade 3	Grade 4	Any Grade
ALT or AST elevated	44 (35%)	13 (10%)	3 (2%)	60 (48%)

- Grade 1-2 resolved with continued idelalisib treatment
- Grade \geq 3 reversible with drug interruption

AE	Any Grade N, %	Grade ≥ 3 N, %
Diarrhea	54 (43%)	16 (13%)
Fatigue	37 (30%)	2 (2%)
Nausea	37 (30%)	2 (2%)
Cough	36 (29%)	None
Pyrexia	35 (28%)	2 (2%)
Dyspnea	22 (18%)	4 (3%)
Decreased appetite	22 (18%)	1 (1%)
Abdominal pain	20 (16%)	3 (2%)
Vomiting	19 (15%)	3 (2%)
URI	18 (14%)	None
Decreased weight	17 (13%)	None
Rash	16 (13%)	2 (2%)
Asthenia	14 (11%)	3 (2%)
Night Sweats	14 (11%)	None
Pneumonia	14 (11%)	9 (7%)

Diarrhea

AST, ALT elevation

Skin Changes

Safety of Idelalisib in B-Cell Malignancies: Integrated Analysis of Eight Clinical Trials

	Idelalisib Monotherapy n=354		Idelalisib Combination Therapy n=406	
AE, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Pyrexia	96 (27)	7 (2)	169 (42)	47 (12)
Diarrhea/colitis	131 (37)	38 (11)	161 (40)	68 (17)
Fatigue	112 (32)	6 (2)	130 (32)	13 (3)
Nausea	91 (26)	5 (1)	125 (31)	30 (7)
Cough	80 (22)	3 (1)	118 (29)	21 (5)
Rash	60 (17)	7 (2)	99 (24)	30 (7)
Chills	49 (14)	0	86 (21)	23 (6)
Pneumonia	47 (13)	40 (11)	74 (18)	56 (14)
Constipation	39 (11)	0	68 (17)	1 (<1)
Dyspnea	43 (12)	7 (2)	68 (17)	10 (3)
Abdominal pain	40 (11)	4 (1)	67 (17)	5 (1)
Vomiting	53 (15)	5 (1)	60 (15)	18 (4)
Decreased appetite	46 (13)	8 (2)	62 (15)	2 (<1)

Safety of Idelalisib in B-Cell Malignancies: Integrated Analysis of Eight Clinical Trials

			+ Idela	Control
*Idela +/- BR	untreated	CLL		
*Idela +/- R	Prev treated	NHL	N=664 7 4% death	N=402 3 5% death
*Idela +/- BR	Prev treated	NHL	1.170 douin	0.070 00001
Idela +/- R	2-3 prior therapies	CLL		
Idela +/- Ofa	2-3 prior therapies	CLL	N=491 23.2% death	N=406 31.5% death
Idela +/- BR	2-3 prior therapies	CLL		

*Idela + R untreated NHL, *Idela + R untreated del17p CLL, *Idela +obinu v Chlor + obinu untreated CLL, *ISTs for untreated

Comparison of incomparable studies

Characteristics	Obinutuzumab + Bendamustine ¹⁷	Idelalisib ¹⁸
AE (G3-5)	65.5%	54%
Neutropenia	34.8%	27%
Thrombocytopenia	10.8%	6%
Anaemia	7.4%	2%
Transaminase elevations		13%
Diarrhoea		13%
Skin rash		2%
Infections	10.1%	9%
Thromboses		
AE which led to treatment	20.1%	20%
discontinuation		
SAE	43.5%	26%
Fatal AE	7.8%	3.2%

Cheson et al., JCO 2018; Gopal et al, NEJM 2014

Characteristic	N=125			
No of prior regimens Median, [Range]	4 [2-12]			
Prior Therapy				
Rituximab	142 (100%)			
Alkylating Agent	142 (100%)			
Refractory to the last therapy				
Rituximab	80 (56%)			
Alkylating Agent	60 (42%)			
Rituximab+Alkylating Agent	62 (43%)			
Disease type, n (%)				
FL	104 (73%)			
SLL	8 (6%)			
LPL/WM	6 (4%)			
MZL	23 (16%)			

Dreyling et al., JCO 2017

Dreyling et al., JCO 2017

		Grade, N	o. (%)	
Adverse Event	All	3	4	5
Any treatment-emergent adverse event Nonhematologic toxicities	140 (99)	75 (53)	38 (27)	6 (4)
Hyperglycemia	/1 (50)	48 (34)	10 (7)	0
Diarmea Fatique	48 (34) 43 (30)	(ئ) / (2) 3	0	0 0
Hypertension	43 (30)	34 (24)	0	0
Fever Nausea Lung infection Oral mucositis Upper respiratory infection	36 (25) 33 (23) 30 (21) 28 (20) 26 (18)	6 (4) 1 (1) 18 (13) 4 (3) 4 (3)	0 0 3 (2) 0 0	0 0 2 (1) 0 0
Cough Maculopapular rash Constipation Bronchial infection Flu-like symptoms Anorexia	23 (16) 18 (13) 17 (12) 16 (11) 16 (11) 15 (11)	0 1 (1) 0 2 (1) 1 (1) 0	0 0 0 0 0	0 0 0 0 0
Skin infection	15 (11)	1 (1)	0	0

	G	rade, No.	Jo. (%)		
Adverse Event	All	3	4	5	
Hematologic toxicities Decreased neutrophil count Decreased platelet count Anemia	42 (30) 29 (20) 22 (15)	11 (8) 9 (6) 6 (4)	23 (16) 1 (1) 0	0 0 0	
Adverse events of special interest Pneumonitis (noninfectious) Colitis	11 (8) 1 (1)	2 (1) 0	0 1 (1)	0 0	
Laboratory toxicities Elevated AST* Elevated ALT*	39 (28) 32 (23)	1 (1) 1 (1)	1 (1) 1 (1)	0 0	

TGR-1202 (Umbralisib) is a next generation PI3Kδ inhibitor

- a unique structure and activity profile distinct from other
 PI3Kδ inhibitors in development including:
- A prolonged half-life and accumulation that enables once-daily dosing
- A differentiated safety profile from other PI3Kδ inhibitors, notably with respect to hepatic toxicity and colitis to date
- Doublets and Triplets being evaluated

Umbralisib Monotherapy R/R FL

Burris HA, et al. Lancet Oncol. 2018

Venetoclax in NHL phase I/II study

Fawler et al., ASH 2016

ALLIANCE: R² vs Lenalidomide in R/R FL (phase II)

Leonard et al., JCO 2015

ALLIANCE: R² vs Lenalidomide in R/R FL (phase II)

Grade 3–4 AEs in > 1 patient, %		Lenalic (n =	domide 45)	R ² (n = 44)		
		Gr. 3	Gr. 4	Gr. 3	Gr. 4	
ogic	.୦ ଚୁ Neutropenia		0	16	4	
latolo	Thrombocytopenia	0	0	4	0	
Haem	Lymphopenia	1	0	3	0	
Fatigue		9	0	11	2	
Thrombosis		9	7	2	2	
Rash		2	2	4	0	
Infection (with neutropenia)		4	0	2	0	
AST		4	0	0	0	

AUGMENT: R² vs Rituximab+Placebo in R/R iNHL (phase III)

Leonard et al., ASH 2018

AUGMENT: R² vs Rituximab+Placebo in R/R iNHL (phase III)

A "positive study"

- Significant difference in PFS (primary target)

Leonard et al., ASH 2018

CC-122 in R/R B cell NHL

Michot et al., TAC 2018

CC-122-NHL-001

The combination of CC122, an investigational pleiotropic pathway modulator, and the second generation antiCD20 antibody obinutuzumab

	Follicular Lymphoma/ Marginal Zone Lymphoma (n = 30)	Diffuse Large B-cell Lymphoma (n = 19)	All Patients (n = 49)
ORR	23 (77%)	9 (47%)	32 (65%)
CR	12 (40%)	2 (11%)	14 (29%)
PR	11 (37%)	7 (37%)	18 (37%)
SD	2 (7%)	3 (16%)	5 (10%)
PFS, median	16.6 months ^a	4.7 months	13.8 months
DOR, median	19.4 months ^a	10.2 months	10.2 months

⁹⁰Yttrium-ibritumomab-tiuxetan in R/R FL

- ¹³¹I tositumomab is no longer commercially available (Beta and Gamma emitting isotopoe, anti-CD20 MoAb, half-life of 8.01 days and a decay energy of 0.971 MeV)
- ⁹⁰Yttrium-ibritumomab-tiuxetan is hardly avaliable(Beta-emitting isotope, anti-CD20 MoAb, half-life of 2.66 days and a decay energy of 2.28 MeV)
- ¹⁷⁷Lu-satetraxetan-lilotomab is being investigated (Beta-emitting isotope, anti-D37 MoAb (half-life of 6.64 days and a decay energy of 6.183 MeV)

Radioimmunotheray in FL – registry data

	Median PFS	8 year PFS
First line	NR	53.6%
Relapse	2.11 years	29.6%

First line	52	46	42	41	41	40	39	27	11	1	1			
Relapse	229	201	179	157	146	136	125	109	77	48	23	10	3	1

	Median OS	8 year OS
First line	NR	78.1%
Relapse	10.8 years	54.5%

Hohloch et al., Br.J.Haematol 2019

¹⁷⁷Lu-satetraxetan-lilotomab: a CD37-targeting radioimmunotherapy

- CD37 is a tetraspanin membrane protein involved in cellular differentiation and proliferation, highly expressed in B-NHL¹ (from B cell to late plasmablast)
- Lutetium-177 is a low energy β -emitter with a half-life matching the circulation time of the anti-CD37 IgG (6.7 days)
- ¹⁷⁷Lu-satetraxetan-lilotomab (Betalutin[®]) is a next generation beta-emitting anti-CD37 radioimmunoconjugate in a ready-to-use formulation for single-dose administration.

¹⁷⁷Lu-satetraxetan-lilotomab monotherapy in R/R iNHL(N=74)

Subtype	ORR n (%)	CR n (%)	PR n (%)	SD n (%)	PD n (%)
All patients	61%	28%	32%	19%	20%
FL (n=57)	37 (65%)	16 (28%)	21 (37%)	10 (18%)	10 (18%)
MZL (n=9)	7 (78%)	4 (44%)	3 (33%)	2 (22%)	
MCL (n=7)	1 (14%)	1 (14%)		2 (28%)	4 (57%)
SLL (n=1)					1

- Median age: 69; median no. prior therapies: 3
- Highly active in 3L FL (n=37): ORR 70%, CR 32% mDoR: 9 months; 20.7 months with CR (on-going)
- Main grade 3/4 toxicities: Reversible neutropenia (G3/4: 35/19%) and thrombocytopenia (25/20%). 2 patients received platelets for bleeding, both G3; low incidence of infections, no febrile neutropenia
- Global Phase 2b RCT "PARADIGME" (3L CD20-refractory FL; n=130) now enrolling

FL POD24 patients subjected to ASCT

			POD24		
			ASCT	No transplant	
	Characteristics		(n=52)	(n=61)	
	Age [median in		47	51	
	years (range)]		(21; 60)	(19; 60)	
eatment	Male gender [No. (%)]		38 (73%)	31 (51%)	
	Clinical risk factors	High-risk FLIPI	20 (39%)	28 (46%)	
	[No. (%)]	Nodal sites > 4	41 (79%)	48 (79%)	
e tr		LDH elevated	14 (27%)	24 (39%)	
1 st -line		Hb < 120g/l	12 (23%)	19 (31%)	
		ECOG > 1	5 (10%)	13 (21%)	
	Treatment	CHOP	37 (71%)	44 (72%)	
	[No. (%)]	MCP	5 (10%)	12 (20%)	
		R-CHOP	10 (19%)	5 (8%)	

ASCT vs no transplant

5-year 2nd-line PFS 51% vs 19% (HR 0.38, 95%-CI) [0.24;0.62], p<0.0001)

5-year 2nd-line OS of 77% vs 59% (HR 0.54, 95%-CI [0.30;0.95], p=0.031)

A significant survival benefit for Patients subjected to ASCT

Jurinovic et al., Biol of Bone Marrow Transpl 2018

FL POD24 patients subjected to ASCT (N=349)

- Retrospective analysis CIBMTR, Center for International Blood and Marrow Transplant Research; NLCS, National LymphoCare Study
- 349 pts with POD24 after rituximab-based I-st line therapy
- Matched, half received auto-SCT, half did not

Casulo C, et al. Biol Blood Marrow Transplant. 2018

RIC allo vs ASCT in FLGIIIa – CIBMTR registry data

Klyuchnikov et al., Bone Marrow Transplant 2015

CART in R/R FL patients (N=14)

Schuster et al., NEJM 2017

Recurrent genetic alterations in FL

Genetic Alteration	Frequency, %	Function	
Gene regulatory element mutations	100	Transcriptional control	
<i>t</i> (14;18)(q32, q21.3)	85-90	Antiapoptosis	
KMT2D mutations	80-90	Histone modification	
Mutations of IGH epitopes that promote N-glycosylation	85-95	BCR signaling	
CREBBP mutations	40-65	Histone modification and immune escape	
BCL2 mutations*	40-65	Antiapoptosis?	
Deletion 6q including EPH7A deletion/methylation, TNFAIP3 mutation/deletion and PRDM1 deletions ^{15,16}	60-70	Tumor suppressor	
TNFRSF14 mutations/deletions, LOH	50	Direct proliferative signal?	
EZH2 mutations	20-30	Histone modification	
Core nistone genes, eg, HIST1H1E	20-30	Histone modification	
RRAGC mutations	~17	mTORC1 signaling	
MEF2B mutations	10-15	Transcription factor	
STAT6 mutations	10-15	JAK-STAT signaling	
EP300 mutations	~10	Histone acetylation	
ARID1A mutations	~10	Chromatin remodelling	
OCT2 mutations	5-10	Transcription factor	
CARD11 mutations	5-10	BCR signaling	
FOXO1 mutations	5-10	BCR signaling	
GNA13 mutations	5-10	Focal adhesion/mobility	
B2M mutations	5-10	Immune escape	
SGK1 mutations	5-10	Protein kinase	

Accumulation of oncogenic alterations occurring through the increased genomic instability

Gascoyne et al., Hematological Oncology. 2017

Phase II multicenter study - Tazemetostat an EZH2 inhibitor, R/R FL

Jagiellonian University Lymphoma Team participated in registration trials of:

Take home messages:

- Majority of FL patients diagnosed in 2018 will die with the disease and not of the disease – in assessing the new regimens, their increased clinical efficacy has to be balanced against their adverse effects and quality of life.
- The choice of the first line therapy in high risk FL patients remains an unmet medical need, which was not yet addressed in the randomized clinical studies.
- Introducing / developing new monoclonal antibodies and more recently "small molecules" targeting intracellular pathways, may be regarded milestones in FL therapy, prolonging OS.

Prof. Wojciech Jurczak, M.D., Ph.D. Dpt of Hematology, Jagiellonian University wojciech.jurczak@uj.edu.pll, (+48 602 338290)

